Skip to main content
Log in

Bioactive Molecules From Native Mexican Avocado Fruit (Persea americana var. drymifolia): A Review

  • Review Article
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Avocado (Persea americana Mill.) is a tree native from central and eastern México that belongs to the Lauraceae family. Avocado has three botanical varieties known as Mexican (P. americana var. drymifolia), West Indian (P. americana var. americana), and Guatemalan (P. americana var. guatemalensis). It is an oil-rich fruit appreciated worldwide because of its nutritional value and the content of bioactive molecules. Several avocado molecules show attractive activities of interest in medicine. Avocado fatty acids have beneficial effects on cardiovascular disease risk factors. Besides, this fruit possesses a high content of carotenoids and phenolic compounds with possible antifungal, anti-cancer and antioxidant activities. Moreover, several metabolites have been reported with anti-inflammatory effects. Also, an unsaponifiable fraction of avocado in combination with soybean oil is used for the treatment of osteoarthritis. The Mexican variety is native from México and is characterized by the anise aroma in leaves and by small thin-skinned fruits of rich flavor and excellent quality. However, the study of the bioactive molecules of the fruit has not been addressed in detail. In this work, we achieved a literature review on the inflammatory, immunomodulatory and cytotoxic properties of long-chain fatty acids and derivatives from Mexican avocado seed. Also, the antioxidant and anti-inflammatory properties of the oil extracted from the avocado seed are referred. Finally, the antimicrobial, immunomodulatory, and cytotoxic activities of some antimicrobial peptides expressed in the fruit are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

LEAS:

Lipid-rich Extract from the Avocado Seed

ASU:

Avocado-Soybean Unsaponifiables

FA:

Fatty Acids

FAD:

Fatty Acids Derivatives

PFA:

Polyhydroxylated Fatty Alcohols

IIR:

Innate Immune Response

HBD-2:

Human β-defensin2

LPS:

Lipopolysaccharide

COX-2:

Cyclooxygenase-2

TNF-α :

Tumor Necrosis Factor alpha

IL-1β :

Interleukin-1 beta

IL-6:

Interleukin-6

IL-8:

Interleukin-8

IL-10:

Interleukin-10

iNOS:

Inducible Nitric Oxide Synthase

UV:

Ultraviolet light

bMECs:

Bovine Mammary Epithelial Cells

ABTS:

2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

DPPH:

2,2-diphenyl-1-picrylhydrazyl

TAC:

Total Antioxidant Capacity

ROS:

Reactive Oxygen Species

AMPs:

Antimicrobial Peptides

References

  1. Chase MW, Christenhusz MJ, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS, Stevens PF (2016) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20. https://doi.org/10.1111/boj.12385

    Article  Google Scholar 

  2. Schaffer B, Wolstenholme BN, Wiley AW (2013) Introduction. In: Schaffer B, Wolstenholme BN, Whiley AW (eds) The avocado: botany, production, and uses. CABI, Wallingford, pp 1–9. https://doi.org/10.1079/9781845937010.0001

  3. FAO. Statistics Division of Food and Agriculture Organization of the United Nations (FAOSTAT). http://www.fao.org/faostat/es/#data/QC. Accessed 6 Nov 2020

  4. Planeación agrícola nacional (2017–2030). https://www.gob.mx/cms/uploads/attachment/file/257067/Potencial-Aguacate.pdf. Accessed 26 June 2020

  5. Lahav E, Lavi U (2013) Genetics and breeding. In: Schaffer B, Wolstenholme BN, Whiley AW (eds) The avocado: botany, production, and uses. CABI, Wallingford, pp 51–85. https://doi.org/10.1079/9781845937010.0051

  6. Sánchez-Albarrán F, Salgado-Garciglia R, Molina-Torres J, López-Gómez R (2019) Oleosome oil storage in the mesocarp of two avocado varieties. J Oleo Sci 68:87–94. https://doi.org/10.5650/jos.ess18176

    Article  CAS  PubMed  Google Scholar 

  7. dos Santos MAZ, Alicieo TVR, Pereira CMP, Ramis-Ramos G, Mendonça CRB (2014) Profile of bioactive compounds in avocado pulp oil: influence of dehydration temperature and extraction method. J Am Oil Chem Soc 91:19–27. https://doi.org/10.1007/s11746-013-2289-x

    Article  CAS  Google Scholar 

  8. Salazar MJ, El Hafidi M, Pastelin G, Ramírez-Ortega MC, Sánchez-Mendoza MA (2005) Effect of an avocado oil-rich diet over an angiotensin II-induced blood pressure response. J Ethnopharmacol 98:335–338. https://doi.org/10.1016/j.jep.2005.01.044

    Article  CAS  PubMed  Google Scholar 

  9. Dabas D, Shegog RM, Ziegler GR, Lambert JD (2013) Avocado (Persea americana) seed as a source of bioactive phytochemicals. Curr Pharm Des 19(34):6133–6140. https://doi.org/10.2174/1381612811319340007

    Article  CAS  PubMed  Google Scholar 

  10. Donnarumma G, Buommino E, Baroni A, Auricchio L, De Filippis A, Cozza V, Msika P, Piccardi N, Tufano MA (2007) Effects of AV119, a natural sugar from avocado, on Malassezia furfur invasiveness and on the expression of HBD-2 and cytokines in human keratinocytes. Exp Dermatol 16(11):912–919. https://doi.org/10.1111/j.1600-0625.2007.00613.x

    Article  CAS  PubMed  Google Scholar 

  11. Au RY, Al-Talib TK, Au AY, Phan PV, Frondoza CG (2007) Avocado soybean unsaponifiables (ASU) suppress TNF-alpha, IL-1beta, COX-2, iNOS gene expression, and prostaglandin E2 and nitric oxide production in articular chondrocytes and monocyte/macrophages. Osteoarthr Cartil 15(11):1249–1255. https://doi.org/10.1016/j.joca.2007.07.009

  12. Heinecke LF, Grzanna MW, Au AY, Mochal CA, Rashmir-Raven A, Frondoza CG (2010) Inhibition of cyclooxygenase-2 expression and prostaglandin E2 production in chondrocytes by avocado soybean unsaponifiables and epigallocatechin gallate. Osteoarthr Cartil 18(2):220–227. https://doi.org/10.1016/j.joca.2009.08.015

    Article  CAS  Google Scholar 

  13. Rodríguez-Sánchez DG, Flores-García M, Silva-Platas C, Rizzo S, Torre-Amione G, De Peña-Díaz A, Hernández-Brenes C, García-Rivas G (2015) Isolation and chemical identification of lipid derivatives from avocado (Persea americana) pulp with antiplatelet and antithrombotic activities. Food Funct 6:193–203. https://doi.org/10.1039/C4FO00610K

    Article  CAS  PubMed  Google Scholar 

  14. Salinas-Salazar C, Hernández-Brenes C, Rodríguez-Sánchez DG, Castillo EC, Navarro-Silva JM, Pacheco A (2017) Inhibitory activity of avocado seed fatty acid derivatives (acetogenins) against Listeria monocytogenes. J Food Sci 82:134–144. https://doi.org/10.1111/1750-3841.13553

    Article  CAS  PubMed  Google Scholar 

  15. Rodríguez-Sánchez DG, Pacheco A, Villarreal-Lara R, Ramos-González MR, Ramos-Parra PA, Granados-Principal S, Díaz de la Garza RI, García-Rivas G, Hernández-Brenes C (2019) Chemical profile and safety assessment of a food-grade acetogenin-enriched antimicrobial extract from avocado seed. Molecules 24:2354. https://doi.org/10.3390/molecules24132354

    Article  CAS  PubMed Central  Google Scholar 

  16. Bhuyan DJ, Alsherbiny MA, Perera S, Low M, Basu A, Devi OA, Barooah MS, Li CG, Papoutsis K (2019) The odyssey of bioactive compounds in avocado (Persea americana) and their health benefits. Antioxidants (Basel) 8(10):426. https://doi.org/10.3390/antiox8100426

    Article  CAS  Google Scholar 

  17. Flores M, Saravia C, Vergara CE, Avila F, Valdés H, Ortiz-Viedma J (2019) Avocado oil: characteristics, properties, and applications. Molecules 24:2172. https://doi.org/10.3390/molecules24112172

  18. Salazar-López NJ, Domínguez-Avila JA, Yahia EM, Belmonte-Herrera BH, Wall-Medrano A, Montalvo-González E, González-Aguilar GA (2020) Avocado fruit and by-products as potential sources of bioactive compounds. Food Res Int 138(Pt A):109774. https://doi.org/10.1016/j.foodres.2020.109774

    Article  CAS  PubMed  Google Scholar 

  19. Chanderbali AS, Soltis DE, Soltis PS, Wolstenholme BN (2013) Taxonomy and botany. In: Schaffer B, Wolstenholme BN, Whiley AW (eds) The avocado: botany, production, and uses. CABI, Wallingford, pp 31–50. https://doi.org/10.1079/9781845937010.0031

  20. Lorea-Hernández FG (2002) La familia Lauraceae en el sur de México: diversidad, distribución y estado de conservación. Bol Soc Bot México 71:59–70. http://www.redalyc.org/articulo.oa?id=57707104

  21. Cowan AK, Wolstenholme BN (2016) Avocado. In: Caballero B, Finglas PM, Toldrá F (eds) Encyclopedia of food and health. Academic, Oxford, pp 294–300. https://doi.org/10.1016/B978-0-12-384947-2.00049-0

  22. Herrera-González JA, Salazar-García S, Gutiérrez-Martínez P, Gonzáles-Durán IJ (2013) Postharvest performance of “Hass” avocado fruit is influenced by rootstock. Rev Mex Cienc Agric 4:19–32. https://doi.org/10.29312/remexca.v4i1.1255

    Article  Google Scholar 

  23. Sánchez-Pérez JDL, Jaimes-Lara MG, Salgado-Garciglia R, López-Meza JE (2009) Root extracts from mexican avocado (Persea americana var. drymifolia) inhibit the mycelial growth of the oomycete Phytophthora cinnamomi. Eur J Plant Pathol 124:595–601. https://doi.org/10.1007/s10658-009-9446-y

    Article  Google Scholar 

  24. Sagrero-Nieves LJ, Bartley P (1995) Volatile components of avocado leaves (Persea americana Mill.) from the Mexican race. J Sci Food Agric 67:49–51. https://doi.org/10.1002/jsfa.2740670109

    Article  CAS  Google Scholar 

  25. Torres-Gurrola G, Delgado-Lamas G, Espinosa-García FJ (2011) The foliar chemical profile of criollo avocado, Persea americana var. drymifolia (Lauraceae), and its relationship with the incidence of a gall-forming insect, Trioza anceps (Triozidae). Biochem Syst Ecol 39:102–111. https://doi.org/10.1016/j.bse.2011.01.011

  26. Corrales-García JE, Méndez-Zúñiga SM (2020) Criollo avocado of mexican race (Persea americana var. drymifolia): an underutilized species in horticulture. Horticult Int J 4:221–223. https://doi.org/10.15406/hij.2020.04.00186

  27. Kachroo A, Kachroo P (2009) Fatty Acid-derived signals in plant defense. Annu Rev Phytopathol 47:153–176. https://doi.org/10.1146/annurev-phyto-080508-081820

    Article  CAS  PubMed  Google Scholar 

  28. Espinosa-Alonso LG, Paredes-López O, Valdez-Morales M, Oomah BD (2017) Avocado oil characteristics of Mexican creole genotypes. Eur J Lipid Sci Technol 119:1600406. https://doi.org/10.1002/ejlt.201600406

    Article  CAS  Google Scholar 

  29. Corrales-García JE, Del Rosario García-Mateos M, Martínez-López E, Barrientos-Priego AF, Ybarra-Moncada MC, Ibarra-Estrada E, Méndez-Zúñiga SM, Becerra-Morales D (2019) Anthocyanin and oil contents, fatty acids profiles and antioxidant activity of Mexican landrace avocado fruits. Plant Foods Hum Nutr 74:210–215. https://doi.org/10.1007/s11130-019-00721-1

    Article  CAS  PubMed  Google Scholar 

  30. Méndez-Zúñiga SM, Corrales-García JE, Gutiérrez-Grijalva EP, García-Mateos R, Pérez-Rubio V, Heredia JB (2019) Fatty acid profile, total carotenoids, and free radical-scavenging from the lipophilic fractions of 12 native Mexican avocado accessions. Plant Foods Hum Nutr 74:501–507. https://doi.org/10.1007/s11130-019-00766-2

    Article  CAS  PubMed  Google Scholar 

  31. Sánchez-Albarrán F, Suárez-Rodríguez LM, Ruíz-Herrera LF, López-Meza JE, López-Gómez R (2020) Two oleosins expressed in the mesocarp of native Mexican avocado, key genes in the oil content. Plant Foods Hum Nutr. https://doi.org/10.1007/s11130-020-00868-2

  32. Ochoa-Zarzosa A, Villarreal-Fernández E, Cano-Camacho H, López-Meza JE (2009) Sodium butyrate inhibits Staphylococcus aureus internalization in bovine mammary epithelial cells and induces the expression of antimicrobial peptide genes. Microb Pathog 47(1):1–7. https://doi.org/10.1016/j.micpath.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  33. Rosenblat G, Meretski S, Segal J, Tarshis M, Schroeder A, Zanin-Zhorov A, Lion G, Ingber A, Hochberg M (2011) Polyhydroxylated fatty alcohols derived from avocado suppress inflammatory response and provide non-sunscreen protection against UV-induced damage in skin cells. Arch Dermatol Res 303(4):239–246. https://doi.org/10.1007/s00403-010-1088-6

    Article  CAS  PubMed  Google Scholar 

  34. Báez-Magaña M, Ochoa-Zarzosa A, Alva-Murillo N, Salgado-Garciglia R, López-Meza JE (2019) Lipid-rich extract from Mexican avocado seed (Persea americana var. drymifolia) reduces Staphylococcus aureus internalization and regulates innate immune response in bovine mammary epithelial cells. J Immunol Res 12:2019:7083491. https://doi.org/10.1155/2019/7083491

  35. Rodríguez-López CE, Hernández-Brenes C, Treviño V, Díaz de la Garza RI (2017) Avocado fruit maturation and ripening: dynamics of aliphatic acetogenins and lipidomic profiles from mesocarp, idioblasts and seed. BMC Plant Biol 17(1):159. https://doi.org/10.1186/s12870-017-1103-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lara-Márquez M, Báez-Magaña M, Raymundo-Ramos C, Spagnuolo PA, Macías-Rodríguez L, Salgado-Garciglia R, Ochoa-Zarzosa A, López-Meza JE (2020) Lipid-rich extract from Mexican avocado (Persea americana var. drymifolia) induces apoptosis and modulates the inflammatory response in Caco-2 human colon cancer cells. J Funct Foods 64:103658. https://doi.org/10.1016/j.jff.2019.103658

  37. Zavala-Guerrero B, Hernández-García A, Torres-Martínez R, Meléndez-Herrera E, Ríos-Chávez P, Ochoa-Zarzosa A, López-Meza JE, Saavedra-Molina A, Salgado-Garciglia R (2020) Antioxidant and anti-inflammatory activities of methanolic fraction from native Mexican avocado seed oil. FASEB J 34(S1):1–1. https://doi.org/10.1096/fasebj.2020.34.s1.07300

    Article  Google Scholar 

  38. Mu YM, Yanase T, Nishi Y, Tanaka A, Saito M, Jin CH, Mukasa C, Okabe T, Nomura M, Goto K, Nawata H (2001) Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology 142:3590–3597. https://doi.org/10.1210/endo.142.8.8293

    Article  CAS  PubMed  Google Scholar 

  39. Beeharry N, Lowe JE, Hernandez AR, Chambers JA, Fucassi F, Cragg PJ, Green MH, Green IC (2003) Linoleic acid and antioxidants protect against DNA damage and apoptosis induced by palmitic acid. Mutat Res 29(1–2):27–33. https://doi.org/10.1016/s0027-5107(03)00134-9530

    Article  Google Scholar 

  40. Llor X, Pons E, Roca A, Alvarez M, Mañé J, Fernández-Bañares F, Gassull MA (2003) The effects of fish oil, olive oil, oleic acid and linoleic acid on colorectal neoplastic processes. Clin Nutr 22(1):71–79. https://doi.org/10.1054/clnu.2002.0627

    Article  CAS  PubMed  Google Scholar 

  41. Oberlies NH, Rogers LL, Martin JM, McLaughlin JL (1998) Cytotoxic and insecticidal constituents of the unripe fruit of Persea americana. J Nat Prod 61:781–785. https://doi.org/10.1021/np9800304

    Article  CAS  PubMed  Google Scholar 

  42. Butt AJ, Roberts CG, Seawright AA, Oelrichs PB, Macleod JK, Liaw TY, Kavallaris M, Somers-Edgar TJ, Lehrbach GM, Watts CK, Sutherland RL (2006) A novel plant toxin, persin, with in vivo activity in the mammary gland, induces Bim-dependent apoptosis in human breast cancer cells. Mol Cancer Ther 5:2300–2309. https://doi.org/10.1158/1535-7163.MCT-06-0170

    Article  CAS  PubMed  Google Scholar 

  43. D’Ambrosio SM, Han C, Pan L, Kinghorn AD, Ding H (2011) Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway. Biochem Biophys Res Commun 409:465–469. https://doi.org/10.1016/j.bbrc.2011.05.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ding H, Han C, Guo D, Chin YW, Ding Y, Kinghorn AD, D’Ambrosio SM (2009) Selective induction of apoptosis of human oral cancer cell lines by avocado extracts via a ROS-mediated mechanism. Nutr Cancer 61:348–356. https://doi.org/10.1080/01635580802567158

    Article  CAS  PubMed  Google Scholar 

  45. Lee EA, Angka L, Rota SG, Hanlon T, Mitchell A, Hurren R, Wang XM, Gronda M, Boyaci E, Bojko B, Minden M, Sriskanthadevan S, Datti A, Wrana JL, Edginton A, Pawliszyn J, Joseph JW, Quadrilatero J, Schimmer AD, Spagnuolo PA (2015) Targeting mitochondria with avocatin B induces selective leukemia cell death. Cancer Res 75:2478–2488. https://doi.org/10.1158/0008-5472.CAN-14-2676

    Article  CAS  PubMed  Google Scholar 

  46. Flores-Alvarez LJ, Guzmán-Rodríguez JJ, López-Gómez R, Salgado-Garciglia R, Ochoa-Zarzosa A, López-Meza JE (2018) PaDef defensin from avocado (Persea americana var. drymifolia) is cytotoxic to K562 chronic myeloid leukemia cells through extrinsic apoptosis. Int J Biochem Cell Biol 99:10–18. https://doi.org/10.1016/j.biocel.2018.03.013

  47. Guzmán-Rodríguez JJ, López-Gómez R, Suárez-Rodríguez LM, Salgado-Garciglia R, Rodríguez-Zapata LC, Ochoa-Zarzosa A, López-Meza JE (2013) Antibacterial activity of defensin PaDef from avocado fruit (Persea americana var. drymifolia) expressed in endothelial cells against Escherichia coli and Staphylococcus aureus. Biomed Res Int 2013:986273. https://doi.org/10.1155/2013/986273

  48. Guzmán-Rodríguez JJ, Ibarra-Laclette E, Herrera-Estrella L, Ochoa-Zarzosa A, Suárez-Rodríguez LM, Rodríguez-Zapata LC, Salgado-Garciglia R, Jimenez-Moraila B, López-Meza JE, López-Gómez R (2013) Analysis of expressed sequence tags (ESTs) from avocado seed (Persea americana var. drymifolia) reveals abundant expression of the gene encoding the antimicrobial peptide snakin. Plant Physiol Biochem 70:318–324. https://doi.org/10.1016/j.plaphy.2013.05.045

  49. Guzmán-Rodríguez JJ, López-Gómez R, Salgado-Garciglia R, Ochoa-Zarzosa A, López-Meza JE (2016) The defensin from avocado (Persea americana var. drymifolia) PaDef induces apoptosis in the human breast cancer cell line MCF-7. Biomed Pharmacother 82:620–627. https://doi.org/10.1016/j.biopha.2016.05.04

  50. Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44(D1):D1087–D1093. https://doi.org/10.1093/nar/gkv1278

    Article  CAS  PubMed  Google Scholar 

  51. García-Olmedo F, Rodríguez-Palenzuela P, Molina A, Alamillo JM, López-Solanilla E, Berrocal-Lobo M, Poza-Carrión C (2001) Antibiotic activities of peptides, hydrogen peroxide and peroxynitrite in plant defence. FEBS Lett 498(2–3):219–222. https://doi.org/10.1016/s0014-5793(01)02456-5

    Article  PubMed  Google Scholar 

  52. Guzmán-Rodríguez JJ, Ochoa-Zarzosa A, López-Gómez R, López-Meza JE (2015) Plant antimicrobial peptides as potential anticancer agents. Biomed Res Int 2015:735087. https://doi.org/10.1155/2015/735087

  53. Barbosa Pelegrini P, Del Sarto RP, Silva ON, Franco OL, Grossi-de-Sa MF (2011) Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int 2011:250349. https://doi.org/10.1155/2011/250349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Loeza-Angeles H, Sagrero-Cisneros E, Lara-Zárate L, Villagómez-Gómez E, López-Meza JE, Ochoa-Zarzosa A (2008) Thionin Thi2.1 from Arabidopsis thaliana expressed in endothelial cells shows antibacterial, antifungal and cytotoxic activity. Biotechnol Lett 30:1713–1719. https://doi.org/10.1007/s10529-008-9756-8

    Article  CAS  PubMed  Google Scholar 

  55. Ngai PH, Ng TB (2004) A napin-like polypeptide from dwarf Chinese white cabbage seeds with translation-inhibitory, trypsin-inhibitory, and antibacterial activities. Peptides 25:171–176. https://doi.org/10.1016/j.peptides.2003.12.012

    Article  CAS  PubMed  Google Scholar 

  56. Mirouze M, Sels J, Richard O, Czernic P, Loubet S, Jacquier A, François IE, Cammue BP, Lebrun M, Berthomieu P, Marquès L (2006) A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance. Plant J 47(3):329–342. https://doi.org/10.1111/j.1365-313X.2006.02788.x

    Article  CAS  PubMed  Google Scholar 

  57. Koike M, Okamoto T, Tsuda S, Imai R (2002) A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation. Biochem Biophys Res Commun 298:46–53. https://doi.org/10.1016/s0006-291x(02)02391-4

    Article  CAS  PubMed  Google Scholar 

  58. Allen A, Snyder AK, Preuss M, Nielsen EE, Shah DM, Smith TJ (2008) Plant defensins and virally encoded fungal toxin KP4 inhibit plant root growth. Planta 227(2):331–339. https://doi.org/10.1007/s00425-007-0620-1

    Article  CAS  PubMed  Google Scholar 

  59. Thomma BP, Cammue BP, Thevissen K (2002) Plant defensins. Planta 216:193–202. https://doi.org/10.1007/s00425-002-0902-6

    Article  CAS  PubMed  Google Scholar 

  60. Lacerda AF, Vasconcelos EA, Pelegrini PB, Grossi de Sa MF (2014) Antifungal defensins and their role in plant defense. Front Microbiol 5:116. https://doi.org/10.3389/fmicb.2014.00116

    Article  PubMed  PubMed Central  Google Scholar 

  61. Poon IKh, Baxter AA, Lay FT, Mills GD, Adda CG, Payne JA, Phan TK, Ryan GF, White JA, Veneer PK, van der Weerden NL, Anderson MA, Kvansakul M, Hulett MD (2014) Phosphoinositide-mediated oligomerization of a defensin induces cell lysis. Elife 3:e01808. https://doi.org/10.7554/eLife.01808

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from CIC-Universidad Michoacana CIC14.5 to JELM; CIC14.1 to AOZ; CIC2.10 to RSG;

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Edmundo López-Meza.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochoa-Zarzosa, A., Báez-Magaña, M., Guzmán-Rodríguez, J.J. et al. Bioactive Molecules From Native Mexican Avocado Fruit (Persea americana var. drymifolia): A Review. Plant Foods Hum Nutr 76, 133–142 (2021). https://doi.org/10.1007/s11130-021-00887-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-021-00887-7

Keywords