Skip to main content
Log in

The Location of the Protonated and Unprotonated Forms of Arbidol in the Membrane: A Molecular Dynamics Study

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Arbidol is a potent broad-spectrum antiviral molecule for the treatment and prophylaxis of many viral infections. Viruses that can be inhibited by arbidol include enveloped and non-enveloped viruses, RNA and DNA viruses, as well as pH-independent and pH-dependent ones. These differences in viral types highlight the broad spectrum of Arb antiviral activity and, therefore, it must affect a common viral critical step. Arbidol incorporates rapidly into biological membranes, and some of its antiviral effects might be related to its capacity to interact with and locate into the membrane. However, no information is available of the molecular basis of its antiviral mechanism/s. We have aimed to locate the protonated (Arp) and unprotonated (Arb) forms of arbidol in a model membrane system. Both Arb and Arp locate in between the hydrocarbon acyl chains of the phospholipids but its specific location and molecular interactions differ from each other. Whereas both Arb and Arp average location in the membrane palisade is a similar one, Arb tends to be perpendicular to the membrane surface, whereas Arp tends to be parallel to it. Furthermore, Arp, in contrast to Arb, seems to interact stronger with POPG than with POPC, implying the existence of a specific interaction between Arp, the protonated from, with negatively charged phospholipids. This data would suggest that the active molecule of arbidol in the membrane is the protonated one, i.e., the positively charged molecule. The broad antiviral activity of arbidol would be defined by the perturbation it exerts on membrane structure and therefore membrane functioning.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Chol:

Cholesterol

Arb:

Arbidol (un-protonated form)

Arp:

Arbidol (protonated form)

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

POPG:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol)

References

  • Anézo C, de Vries AH, Höltje H-D, Tieleman DP, Marrink S-J (2003) Methodological issues in lipid bilayers simulations. J Phys Chem B 107:9424–9433

    Article  Google Scholar 

  • Blaising J, Polyak SJ, Pecheur EI (2014) Arbidol as a broad-spectrum antiviral: an update. Antiviral Res 107:84–94

    Article  CAS  PubMed  Google Scholar 

  • Bockmann RA, Hac A, Heimburg T, Grubmuller H (2003) Effect of sodium chloride on a lipid bilayer. Biophys J 85:1647–1655

    Article  PubMed  PubMed Central  Google Scholar 

  • Boriskin YS, Leneva IA, Pecheur EI, Polyak SJ (2008) Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Curr Med Chem 15:997–1005

    Article  CAS  PubMed  Google Scholar 

  • Brooks MJ, Burtseva EI, Ellery PJ, Marsh GA, Lew AM, Slepushkin AN, Crowe SM, Tannock GA (2012) Antiviral activity of arbidol, a broad-spectrum drug for use against respiratory viruses, varies according to test conditions. J Med Virol 84:170–181

    Article  CAS  PubMed  Google Scholar 

  • Delogu I, Pastorino B, Baronti C, Nougairede A, Bonnet E, de Lamballerie X (2011) In vitro antiviral activity of arbidol against Chikungunya virus and characteristics of a selected resistant mutant. Antiviral Res 90:99–107

    Article  CAS  PubMed  Google Scholar 

  • Deng HY, Luo F, Shi LQ, Zhong Q, Liu YJ, Yang ZQ (2009) Efficacy of arbidol on lethal hantaan virus infections in suckling mice and in vitro. Acta Pharmacol Sin 30:1015–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feller SE, Zhang Y, Pastor RWJ (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613–4621

    Article  CAS  Google Scholar 

  • Galiano V, Villalain J (2015) Oleuropein aglycone in lipid bilayer membranes. A molecular dynamics study. Biochim Biophys Acta 1848:2849–2858

    Article  CAS  PubMed  Google Scholar 

  • Giorgino T (2014) Computing 1-D atomic densities in macromolecular simulations: the density profile tool for VMD. Comput Phys Commun 185:317–322

    Article  CAS  Google Scholar 

  • Guixa-Gonzalez R, Rodriguez-Espigares I, Ramirez-Anguita JM, Carrio-Gaspar P, Martinez-Seara H, Giorgino T, Selent J (2014) MEMBPLUGIN: studying membrane complexity in VMD. Bioinformatics 30:1478–1480

    Article  CAS  PubMed  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–8):27–28

    Google Scholar 

  • Ingolfsson HI, Melo MN, van Eerden FJ, Arnarez C, Lopez CA, Wassenaar TA, Periole X, de Vries AH, Tieleman DP, Marrink SJ (2014) Lipid organization of the plasma membrane. J Am Chem Soc 136:14554–14559

    Article  CAS  PubMed  Google Scholar 

  • Kandt C, Ash WL, Tieleman DP (2007) Setting up and running molecular dynamics simulations of membrane proteins. Methods 41:475–488

    Article  CAS  PubMed  Google Scholar 

  • Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosinova P, Berka K, Wykes M, Otyepka M, Trouillas P (2012) Positioning of antioxidant quercetin and its metabolites in lipid bilayer membranes: implication for their lipid-peroxidation inhibition. J Phys Chem B 116:1309–1318

    Article  CAS  PubMed  Google Scholar 

  • Leneva IA, Russell RJ, Boriskin YS, Hay AJ (2009) Characteristics of arbidol-resistant mutants of influenza virus: implications for the mechanism of anti-influenza action of arbidol. Antiviral Res 81:132–140

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Xiong HR, Lu L, Liu YY, Luo F, Hou W, Yang ZQ (2013) Antiviral and anti-inflammatory activity of arbidol hydrochloride in influenza A (H1N1) virus infection. Acta Pharmacol Sin 34:1075–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189

    Article  CAS  Google Scholar 

  • Murzyn K, Rog T, Jezierski G, Takaoka Y, Pasenkiewicz-Gierula M (2001) Effects of phospholipid unsaturation on the membrane/water interface: a molecular simulation study. Biophys J 81:170–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasser ZH, Swaminathan K, Muller P, Downard KM (2013) Inhibition of influenza hemagglutinin with the antiviral inhibitor arbidol using a proteomics based approach and mass spectrometry. Antiviral Res 100:399–406

    Article  CAS  PubMed  Google Scholar 

  • Ozu M, Alvarez HA, McCarthy AN, Grigera JR, Chara O (2013) Molecular dynamics of water in the neighborhood of aquaporins. Eur Biophys J 42:223–239

    Article  CAS  PubMed  Google Scholar 

  • Patra M, Karttunen M, Hyvonen MT, Falck E, Lindqvist P, Vattulainen I (2003) Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys J 84:3636–3645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecheur EI, Lavillette D, Alcaras F, Molle J, Boriskin YS, Roberts M, Cosset FL, Polyak SJ (2007) Biochemical mechanism of hepatitis C virus inhibition by the broad-spectrum antiviral arbidol. Biochemistry 46:6050–6059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecheur EI, Borisevich V, Halfmann P, Morrey JD, Smee DF, Prichard M, Mire CE, Kawaoka Y, Geisbert TW, Polyak SJ (2016) The synthetic antiviral drug arbidol inhibits globally prevalent pathogenic viruses. J Virol. doi:10.1128/JVI.02077-15

  • Perfetto B, Filosa R, De Gregorio V, Peduto A, La Gatta A, de Caprariis P, Tufano MA, Donnarumma G (2014) In vitro antiviral and immunomodulatory activity of arbidol and structurally related derivatives in herpes simplex virus type 1-infected human keratinocytes (HaCat). J Med Microbiol 63:1474–1483

    Article  PubMed  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Xiong H, He J, Deng H, Li Q, Zhong Q, Hou W, Cheng L, Xiao H, Yang Z (2007) Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo. Arch Virol 152:1447–1455

    Article  CAS  PubMed  Google Scholar 

  • Teissier E, Penin F, Pecheur EI (2011a) Targeting cell entry of enveloped viruses as an antiviral strategy. Molecules 16:221–250

    Article  CAS  Google Scholar 

  • Teissier E, Zandomeneghi G, Loquet A, Lavillette D, Lavergne JP, Montserret R, Cosset FL, Bockmann A, Meier BH, Penin F, Pecheur EI (2011b) Mechanism of inhibition of enveloped virus membrane fusion by the antiviral drug arbidol. PLoS ONE 6:e15874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tieleman DP, Marrink SJ, Berendsen HJ (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331:235–270

    Article  CAS  PubMed  Google Scholar 

  • Tsai HH, Lee JB, Li HS, Hou TY, Chu WY, Shen PC, Chen YY, Tan CJ, Hu JC, Chiu CC (2015) Geometrical effects of phospholipid olefinic bonds on the structure and dynamics of membranes: a molecular dynamics study. Biochim Biophys Acta 1848:1234–1247

    Article  CAS  PubMed  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villalain J (2010) Membranotropic effects of arbidol, a broad anti-viral molecule, on phospholipid model membranes. J Phys Chem B 114:8544–8554

    Article  CAS  PubMed  Google Scholar 

  • Wu EL, Cheng X, Jo S, Rui H, Song KC, Davila-Contreras EM, Qi Y, Lee J, Monje-Galvan V, Venable RM, Klauda JB, Im W (2014) CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem 35:1997–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong Q, Yang Z, Liu Y, Deng H, Xiao H, Shi L, He J (2009) Antiviral activity of Arbidol against Coxsackie virus B5 in vitro and in vivo. Arch Virol 154:601–607

    Article  CAS  PubMed  Google Scholar 

  • Zhuang X, Makover JR, Im W, Klauda JB (2014) A systematic molecular dynamics simulation study of temperature dependent bilayer structural properties. Biochim Biophys Acta 1838:2520–2529

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research conducted in this work was partially funded by grant BFU2013-43198-P (Ministerio de Economía y Competitividad, Spain) to J.V. NAMD was developed by the Theoretical and Computational Biophysics Group in the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Villalaín.

Ethics declarations

Conflict of interest

None to declare.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galiano, V., Villalaín, J. The Location of the Protonated and Unprotonated Forms of Arbidol in the Membrane: A Molecular Dynamics Study. J Membrane Biol 249, 381–391 (2016). https://doi.org/10.1007/s00232-016-9876-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9876-3

Keywords